Abstract
Low-bandgap conjugated polymers attract significant research interests because of their broad light absorption spectra in the red and near-infrared regions, making them desirable materials for solar photovoltaics. To date, low-bandgap conjugated polymers yield some of the best power conversion efficiencies offered by polymer solar cells. In addition to their applications as solar photovoltaic materials, nanoparticles of these polymers may be potentially beneficial for cell imaging because of their red and near-infrared absorption features, which are required for significant light penetration into biological samples. In this work, conjugated polymer dots (CPdots) of PCPDTBT, PSBTBT, PTB7, PCDTBT, and PBDTTPD are prepared in aqueous solution using nanoprecipitation. The maximum fluorescence wavelengths of these CPdots range from 800 to 1000 nm. The CPdots exhibit an average zeta potential of −30 mV, giving rise to colloidal stability of these nanoparticles. Dynamic light scattering results show that the CPd...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.