Abstract

High-resistivity silicon substrates (HRS, NB<1014cm−3) are commonly used, especially in optoelectronic integrated circuits. However, standard metal oxide semiconductor (MOS) characterization methods fail to predict correctly the dopant concentration and lifetime. This is due to the high resistance in series with the MOS capacitor, which causes an erroneous capacitance measurement at high frequency. To overcome this restriction, a different characterization method is proposed, using the electronic transport property of silicon-rich oxide (SRO) films, with aluminum/silicon-rich oxide (Al/SRO/Si) devices and using capacitance-voltage (C-V) and current-voltage (I-V) characteristics, the dopant concentration and lifetime can be estimated with these method. In addition, using low/high-frequency C-V measurements in MOS structure on HRS can be used to determine the dopant concentration. In this work, low-resistivity silicon and HRS substrates are characterized. The results for both type of substrates and for the different methods are compared. It is shown that the results are similar and any of these methods produce reliable results, but the Al/SRO/Si structure has the advantage that the generation lifetime is easily obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.