Abstract
We demonstrate that ter(9,9′-spirobifluorene) (TSBF) doped in a host matrix layer of 4,4′-bis(carbazol-9-yl)biphenyl (CBP) shows a low amplified spontaneous emission (ASE) threshold (Eth = 1.0 μJ cm−2) and suppressed electroluminescence efficiency roll-off at high current densities (no roll-off up to 100 mA cm−2). One origin of the low ASE threshold is that the TSBF-doped CBP layer possesses a very large radiative decay constant (kr = 1.1 × 109 s−1). Singlet–triplet annihilation is almost suppressed in the TSBF-doped CBP layer, which can be ascribed to the small overlap between the emission and triplet absorption of TSBF. Also, the small energy level difference between TSBF and CBP minimizes carrier trapping in TSBF, leading to the suppression of singlet–polaron annihilation. TSBF showed one of the lowest Eth and the most suppressed efficiency roll-off among organic laser dyes investigated in this study and, therefore, is believed to be a promising candidate to realize electrically pumped organic semiconductor laser diodes in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.