Abstract

This study presents observations of Love-to-Rayleigh scattering beneath the eastern North American passive margin that place new constraints on seismic anisotropy in the upper mantle. The scattering of Love-wave energy to Rayleigh waves is generated via sharp lateral gradients in anisotropic structure along the source-receiver path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depends on the strength of the anisotropic contrast as well as the geometrical relationship between the propagation azimuth and the anisotropic symmetry axis. Previous studies of seismic anisotropy in the upper mantle beneath eastern North America have revealed evidence for a mix of lithospheric and asthenospheric contributions, but the interpretation of indicators such as SKS splitting is hampered by a lack of vertical resolution. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves, which have the additional advantage of sampling portions of the margin that lie offshore. Here we present measurements of QL phases using data from several hundred broadband seismic stations in eastern North America, including stations of the USArray Transportable Array, the Central and Eastern U.S. Network, and the MAGIC experiment in the central Appalachians. We find evidence for clear QL arrivals at stations in eastern North America, consistent with a region of particularly strong and coherent scattering inferred just offshore the central portion of the margin. The coherent scattering near the Eastern North American Margin likely reflects lateral transitions in seismic anisotropy in the asthenospheric mantle, associated with locally complex three-dimensional flow, with possible additional contributions from anisotropy in the mantle lithosphere. A second region of strong QL scattering near the southern coast of Greenland is enigmatic in origin, but may be due to pre-existing lithospheric fabric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call