Abstract

Reducing power consumption is important for the development of smaller cochlear implant (CI) speech processors. Simultaneous electrode stimulation may improve power efficiency by minimizing the required current applied to a given electrode. Simultaneous in-phase stimulation on adjacent electrodes (i.e. virtual channels) can be used to elicit pitch percepts intermediate to the ones provided by each of the physical electrodes in isolation. Virtual channels are typically implemented in monopolar stimulation mode, producing broad excitation patterns. Focused stimulation may reduce the excitation patterns, but is inefficient in terms of power consumption. To create a more power efficient virtual channel, we developed the Dynamically Compensated Virtual Channel (DC-VC) using four adjacent electrodes. The two central electrodes are current steered using the coefficient α (0<α<1 ) whereas the two flanking electrodes are used to focus/unfocus the stimulation with the coefficient σ (−1<σ<1). With increasing values of σ, power can be saved at the potential expense of generating broader electric fields. Additionally, reshaping the electric fields might also alter place pitch coding.The goal of the present study is to investigate the tradeoff between place pitch encoding and power savings using simultaneous electrode stimulation in the DC-VC configuration. A computational model and psychophysical experiments in CI users have been used for that purpose.Results from 10 adult Advanced Bionics CI users have been collected. Results show that the required current to produce comfortable levels is significantly reduced with increasing σ as predicted by the computational model. Moreover, no significant differences in the estimated number of discriminable steps were detected for the different values of σ. From these results, we conclude that DC-VCs can reduce power consumption without decreasing the number of discriminable place pitch steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.