Abstract

Although cochlear implants are an established method of restoring hearing, they can have limitations such as increasing current spread and decreasing frequency resolution due to tissue growth around the electrode array. Impedance measurements in cochlear implants have become a versatile tool for intra- and post-operative diagnosis of cochlear implant state. However, most clinical devices use current pulse stimulation already available in the implants and analyze the voltage response in the time-domain and spread along the cochlea. To use the full potential of impedance spectroscopy in differentiating cell types, measurement over an extended frequency range is required. This study presents a simple electrical equivalent circuit for impedance spectroscopy with cochlear implants in a 2-pole configuration. The electrical equivalent circuit describes the electrical properties of the cochlear implant electrode and its electrochemical behavior at the electrode-electrolyte interface by comparing two non-linear bilayer models, Cole-Cole and Schwan-Faraday. The model is validated for four cochlear implant electrodes from four different manufacturers (MED-EL FlexSoft, AB HiFocus SlimJ, Oticon EVO, Cochlear Nucleus CI622) characterized by impedance spectroscopy between 5 Hz and 13 MHz. In the future, this electrical equivalent circuit may help to extract parameters for differentiating cell types around the cochlear implant electrode from an impedance spectroscopic measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.