Abstract

The adsorption of methylene blue (MB) by low cost biomass lotus seedpod (LSP) was optimized by a central composite design combined with response surface methodology in aqueous solution. Solution pH, initial dye concentration and adsorbent dosage were studied as independent variables at five levels each, respectively. Analysis of variance suggested the validity of the regression model. LSP was characterized by Fourier transform infrared spectra and energy dispersive spectroscopy. The kinetics revealed that the adsorption behavior followed the pseudo-second-order model. Langmuir and Freundlich isotherm models were used to evaluate the adsorption, and the experimental data were better fitted by the Langmuir isotherm than the Freundlich isotherm. The maximum monolayer adsorption capacity of the LSP was 157.98 mg g-1 at 30 °C for MB adsorption. In addition, 0.2 M HCl solution could be used for reusability of LSP via desorption tests. LSP was proven to be an available and effective biosorbent for MB removal from aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call