Abstract
Capacitive plasma pickup is a well-known and difficult problem for plasma-facing edge diagnostics. This problem must be addressed to ensure an accurate and robust interpretation of the real signal measurements vs noise. The Faraday cup fast ion loss detector array of the Joint European Torus (JET) is particularly prone to this issue and can be used as a testbed to prototype solutions. The issue of separation and distinction between warranted fast ion signal and electromagnetic plasma noise has traditionally been solved with hardware modifications, but a more versatile post-processing approach is of great interest. This work presents post-processing techniques to characterize the signal noise. While hardware changes and advancements may be limited, the combination with post-processing procedures allows for more rapid and robust analysis of measurements. The characterization of plasma pickup noise is examined for alpha losses in a discharge from JET's tritium campaign. In addition to highlighting the post-processing methodology, the spatial sensitivity of the detector array is also examined, which presents significant advantages for the physical interpretation of fast ion losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.