Abstract

This paper proposes a lossless to lossy compression scheme for hyperspectral images based on dual-tree Binary Embedded Zerotree Wavelet (BEZW) algorithm. The algorithm adapts Karhunen-Loève Transform and Discrete Wavelet Transform to achieve 3-D integer reversible hybrid transform and decorrelate spectral and spatial data. Since statistics of the hyperspectral image are not symmetrical, the asymmetrical dual-tree structure is introduced. The 3-D BEZW algorithm compresses hyperspectral images by implementing progressive bitplane coding. The lossless and lossy compression performance is compared with other state-of-the-art predictive coding and transform-based coding algorithms on Airborne Visible/Infrared Imaging Spectrometer images. Results show that the 3-D-BEZW lossless compression performance is comparable with the best predictive algorithms, while its computational cost is comparable with those of transform-based algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.