Abstract

In this paper, a lossless to lossy transform based image compression of hyperspectral images based on Integer Karhunen-Loeve Transform (IKLT) and Integer Discrete Wavelet Transform (IDWT) is proposed. Integer transforms are used to accomplish reversibility. The IKLT is used as a spectral decorrelator and the 2D-IDWT is used as a spatial decorrelator. The three-dimensional Binary Embedded Zerotree Wavelet (3D-BEZW) algorithm efficiently encodes hyperspectral volumetric image by implementing progressive bitplane coding. The signs and magnitudes of transform coefficients are encoded separately. Lossy and lossless compressions of signs are implemented by conventional EZW algorithm and arithmetic coding respectively. The efficient 3D-BEZW algorithm is applied to code magnitudes. Further compression can be achieved using arithmetic coding. The lossless and lossy compression performance is compared with other state of the art predictive and transform based image compression methods on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. Results show that the 3D-BEZW performance is comparable to predictive algorithms. However, its computational cost is comparable to transform- based algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.