Abstract

Hyperspectral (HS) image is a three dimensional data image where the 3rd dimension carries the wealth of spectrum information. HS image compression is one of the areas that has attracted increasing attention for big data processing and analysis. HS data has its own distinguishing feature which differs with video because without motion, also different with a still image because of redundancy along the wavelength axis. The prediction based method is playing an important role in the compression and research area. Reflectance distribution of HS based on our analysis indicates that there is some nonlinear relationship in intra-band. The Multilayer Propagation Neural Networks (MLPNN) with backpropagation training are particularly well suited for addressing the approximation function. In this paper, an MLPNN based predictive image compression method is presented. We propose a hybrid Adaptive Prediction Mechanism (APM) with MLPNN model (APM-MLPNN). MLPNN is trained to predict the succeeding bands by using current band information. The purpose is to explore whether MLPNN can provide better image compression results in HS images. Besides, it uses less computation cost than a deep learning model so we can easily validate the model. We encoded the weights vector and the bias vector of MLPNN as well as the residuals. That is the only few bytes it then sends to the decoder side. The decoder will reconstruct a band by using the same structure of the network. We call it an MLPNN decoder. The MLPNN decoder does not need to be trained as the weights and biases have already been transmitted. We can easily reconstruct the succeeding bands by the MLPNN decoder. APM constrained the correction offset between the succeeding band and the current spectral band in order to prevent HS image being affected by large predictive biases. The performance of the proposed algorithm is verified by several HS images from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) reflectance dataset. MLPNN simulation results can improve prediction accuracy; reduce residual of intra-band with high compression ratio and relatively lower bitrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.