Abstract
The high-efficiency injection of a low-energy positron beam into the confinement volume of a magnetic dipole has been demonstrated experimentally. This was accomplished by tailoring the three-dimensional guiding-center drift orbits of positrons via optimization of electrostatic potentials applied to electrodes at the edge of the trap, thereby producing localized and essentially lossless cross-field particle transport by means of the E×B drift. The experimental findings are reproduced and elucidated by numerical simulations, enabling a comprehensive understanding of the process. These results answer key questions and establish methods for use in upcoming experiments to create an electron-positron plasma in a levitated dipole device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.