Abstract

We present numerical simulations of fully nonlinear drift wave–zonal flow (DW–ZF) turbulence systems in a nonuniform magnetoplasma. In our model, the drift wave (DW) dynamics is pseudo-three-dimensional (pseudo-3D) and accounts for self-interactions among finite amplitude DWs and their coupling to the two-dimensional (2D) large amplitude zonal flows (ZFs). The dynamics of the 2D ZFs in the presence of the Reynolds stress of the pseudo-3D DWs is governed by the driven Euler equation. Numerical simulations of the fully nonlinear coupled DW–ZF equations reveal that short scale DW turbulence leads to nonlinear saturated dipolar vortices, whereas the ZF sets in spontaneously and is dominated by a monopolar vortex structure. The ZFs are found to suppress the cross-field turbulent particle transport. The present results provide a better model for understanding the coexistence of short and large scale coherent structures, as well as associated subdued cross-field particle transport in magnetically confined fusion plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.