Abstract
Images include information about human body which is used for different purpose such as medical examination security and other plans Compression of images is used in some applications such as profiling information and transmission systems. Regard to importance of images information, lossless or loss compression is preferred. Lossless compressions are JPEG, JPEG-LS and JPEG2000 are few well-known methods for lossless compression. We will use differential pulse code modulation for image compression with Huffman encoder, which is one of the latest and provides good compression ratio, peak signal to noise ratio and minimum mean square error. In real time application which needs hardware implementation, low complex algorithm accelerate compression process. In this paper, we use differential pulse code modulation for image compression lossless and near-lossless compression method is introduced which is efficient due to its high compression ratio and simplicity. This method is consists of a new transformation method called Enhanced DPCM Transformation (EDT) which has a good energy compaction and a suitable Huffman encoding. After introducing this compression method it is applied on different images from Corel dataset for experimental results and analysis. Also we compare it with other existing methods with respect to parameter compression ratio, peak signal noise ratio and mean square error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Signal Processing, Image Processing and Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.