Abstract
Adipose inflammation is crucial to the pathogenesis of metabolic disorders. This study aimed at identify the effects of stearoyl-CoA desaturase-1 (SCD1) on the inflammatory response of a paracrine network involving adipocytes, macrophages, and endothelial cells. Loss of SCD1 in both genetic (Agouti) and diet-induced obesity (high-fat diet) mouse models prevented inflammation in white adipose tissue and improved its basal insulin signaling. In SCD1-deficient mice, white adipose tissue exhibited lower inflammation, with a reduced response to lipopolysaccharide in isolated adipocytes, but not in peritoneal macrophages. Mimicking the in vivo paracrine regulation of white adipose tissue inflammation, SCD1-deficient adipocyte-conditioned medium attenuated the induction of tumor necrosis factor (TNF) alpha/interleukin 1beta gene expression in RAW264.7 macrophages and reduced the adhesion response in endothelial cells. We further demonstrated that the adipocyte-derived oleate (18:1n9), but not palmitoleate (16:1n7), mediated the inflammation in macrophages and adhesion responses in endothelial cells. Loss of SCD1 attenuates adipocyte inflammation and its paracrine regulation of inflammation in macrophages and endothelial cells. The reduced oleate level is linked to the inflammation-modulating effects of SCD1 deficiency.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have