Abstract

Microglia are the brain-resident immune cells responsible for surveilling and protecting the central nervous system. These cells can express a wide array of immune genes, and that expression can become highly dynamic in response to changes in the environment, such as traumatic injury or neurological disease. Though microglial immune responses are well studied, we still do not know many mechanisms and regulators underlying all the varied microglial responses. Serpin E2 is a serine protease inhibitor that acts on a wide variety of serine proteases, with particularly potent affinity for the blood clotting enzyme thrombin. In the brain, Serpin E2 is highly expressed by many cell types, especially glia, and loss of Serpin E2 leads to behavioral changes as well as deficits in synaptic plasticity. To determine whether Serpin E2 is important for maintaining homeostasis in glia, we performed RNA sequencing of microglia and astrocytes from Serpin E2-deficient mice in a healthy state or under immune activation due to lipopolysaccharide (LPS) injection. We found that microglia in Serpin E2-deficient mice had higher expression of antimicrobial genes, while astrocytes did not display any robust changes in transcription. Furthermore, the lack of Serpin E2 did not affect transcriptional responses to LPS in either microglia or astrocytes. Overall, we find that Serpin E2 is a regulator of antimicrobial genes in microglia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call