Abstract

Down syndrome cell adhesion molecule (DSCAM) is a neural adhesion molecule that plays diverse roles in neural development. We disrupted the Dscam locus in mice and found that the null mutants (Dscam (-/-)) died within 24 hours after birth. Whole body plethysmography showed irregular respiration and lower ventilatory response to hypercapnia in the null mutants. Further, a medulla-spinal cord preparation of Dscam (-/-) mice showed that the C4 ventral root activity, which drives diaphragm contraction for inspiration, had an irregular rhythm with frequent apneas. Optical imaging of the preparation using voltage-sensitive dye revealed that the pre-inspiratory (Pre-I) neurons located in the rostral ventrolateral medulla (RVLM) and belonging to the rhythm generator for respiration, lost their synchroneity in Dscam (-/-) mice. Dscam (+/-) mice, which survived to adulthood without any overt abnormalities, also showed irregular respiration but milder than Dscam (-/-) mice. These results suggest that DSCAM plays a critical role in central respiratory regulation in a dosage-dependent manner. These results have been published (Amano et al. 2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.