Abstract

IntroductionPluripotent stem cells are increasingly used to build therapeutic models, including the transplantation of neural progenitors derived from human embryonic stem cells (hESCs). Recently, long non-coding RNAs (lncRNAs), including delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (DLK1-DIO3) imprinted locus-derived maternally expressed gene 3 (MEG3), were found to be expressed during neural development. The deregulation of these lncRNAs is associated with various neurological diseases. The imprinted locus DLK1-DIO3 encodes abundant non-coding RNAs (ncRNAs) that are regulated by differential methylation of the locus. We aim to study the correlation between the DLK1-DIO3-derived ncRNAs and the capacity of hESCs to differentiate into neural lineages.MethodsWe classified hESC sublines into MEG3-ON and MEG3-OFF based on the expression levels of MEG3 and its downstream microRNAs as detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A cDNA microarray was used to analyze the gene expression profiles of hESCs. To investigate the capacity of neural differentiation in MEG3-ON and MEG3-OFF hESCs, we performed neural lineage differentiation followed by neural lineage marker expression and neurite formation analyses via qRT-PCR and immunocytochemistry, respectively. MEG3-knockdown via small interfering RNA (siRNA) and small hairpin RNA (shRNA) was used to investigate the potential causative effect of MEG3 in regulating neural lineage-related gene expression.ResultsDLK1-DIO3-derived ncRNAs were repressed in MEG3-OFF hESCs compared with those in the MEG3-ON hESCs. The transcriptome profile indicated that many genes related to nervous system development and neural-type tumors were differentially expressed in MEG3-OFF hESCs. Three independent MEG3-knockdown assays using different siRNA and shRNA constructs consistently resulted in downregulation of some neural lineage genes. Lower expression levels of stage-specific neural lineage markers and reduced neurite formation were observed in neural lineage-like cells derived from MEG3-OFF-associated hESCs compared with those in the MEG3-ON groups at the same time points after differentiation.ConclusionsRepression of ncRNAs derived from the DLK1-DIO3 imprinted locus is associated with reduced neural lineage differentiation potential in hESCs.Electronic supplementary materialThe online version of this article (doi:10.1186/scrt535) contains supplementary material, which is available to authorized users.

Highlights

  • Pluripotent stem cells are increasingly used to build therapeutic models, including the transplantation of neural progenitors derived from human embryonic stem cells

  • The transcriptome profile indicated that many genes related to nervous system development and neural-type tumors were differentially expressed in maternally expressed gene 3 (MEG3)-OFF human embryonic stem cell (hESC)

  • Our miRNA expression profile, which was analyzed by using the Nanostring nCounterTM analysis system (Human miRNA Panel version 2) [47], further confirmed that 37 out of 39 of the most significantly downregulated miRNAs in later-passage hESCs were derived from the DLK1-DIO3 locus (Additional file 3: Table S2)

Read more

Summary

Introduction

Pluripotent stem cells are increasingly used to build therapeutic models, including the transplantation of neural progenitors derived from human embryonic stem cells (hESCs). Long non-coding RNAs (lncRNAs), including delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (DLK1-DIO3) imprinted locus-derived maternally expressed gene 3 (MEG3), were found to be expressed during neural development. The deregulation of these lncRNAs is associated with various neurological diseases. Pluripotent stem cells are increasingly used for therapeutic models, including the transplantation of neural progenitors derived from human embryonic stem cells (hESCs) [1]. LncRNAs may play important roles in deriving neural lineage cells from hESCs

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.