Abstract

Mutations in EFTUD2 are responsible for the autosomal dominant syndrome named MFDM (mandibulofacial dysostosis with microcephaly). However, it is not clear how reduced levels of EFTUD2 cause abnormalities associated with this syndrome. To determine if the mouse can serve as a model for uncovering the etiology of abnormalities found in MFDM patients, we used in situ hybridization to characterize expression of Eftud2 during mouse development, and used CRISPR/Cas9 to generate a mutant mouse line with deletion of exon 2 of the mouse gene. We found that Eftud2 was expressed throughout embryonic development, though its expression was enriched in the developing head and craniofacial regions. Additionally, Eftud2 heterozygous mutant embryos had reduced EFTUD2 mRNA and protein levels. Moreover, Eftud2 heterozygous embryos were born at the expected Mendelian frequency, and were viable and fertile despite being developmentally delayed. In contrast, Eftud2 homozygous mutant embryos were not found post-implantation but were present at the expected Mendelian frequency at embryonic day (E) 3.5. Furthermore, only wild-type and heterozygous E3.5 embryos survived ex vivo culture. Our data indicate that Eftud2 expression is enriched in the precusor of structures affected in MFDM patients and show that heterozygous mice carrying deletion of exon 2 do not model MFDM. In addition, we uncovered a requirement for normal levels of Eftud2 for survival of pre-implantation zygotes.

Highlights

  • To determine when Eftud2 is first expressed in organs affected in MFDM patients, we performed in situ hybridization and characterized expression of this gene in wild-type embryos from E7.5 to E10.5 (Figs 1 and S1)

  • To evaluate if Eftud2 heterozygous mice were born at the expected Mendelian frequency and survived the perinatal period, litters were monitored from postnatal day (P)0 to P21 on both genetic background

  • Though a subset of MFDM patients have heart defects, Eftud2 expression was only found in the developing heart at E9.5

Read more

Summary

Introduction

To determine when Eftud2 is first expressed in organs affected in MFDM patients, we performed in situ hybridization and characterized expression of this gene in wild-type embryos from E7.5 to E10.5 (Figs 1 and S1). To determine if heterozygous mutation of Eftud2 in mouse models MFDM, we used CRISPR/ Cas9 to delete exon 2 of Eftud2 on two genetic backgrounds: a mixed (CD1;FvB) and an inbred (C57BL/6).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call