Abstract

The DExD/H box RNA helicase retinoic acid-inducible gene I (RIG-I) and the melanoma differentiation-associated gene 5 (MDA5) are key intracellular receptors that recognize virus infection to produce type I IFN. A third helicase gene, Lgp2, is homologous to Rig-I and Mda5 but lacks a caspase activation and recruitment domain. We generated Lgp2-deficient mice and report that the loss of this gene greatly sensitizes cells to cytosolic polyinosinic/polycytidylic acid-mediated induction of type I IFN. However, negative feedback inhibition of IFN-beta transcription was found to be normal in the absence of LGP2, indicating that LGP2 is not the primary negative regulator of type I IFN production. Our data further indicate that Lgp2-/- mice exhibited resistance to lethal vesicular stomatitis virus infection, a virus whose replicative RNA intermediates are recognized specifically by RIG-I rather than by MDA5 to trigger the production of type I IFN. However, mice lacking LGP2 were observed to exhibit a defect in type I IFN production in response to infection by the encephalomyocarditis virus, the replication of which activates MDA5-dependent innate immune responses. Collectively, our data indicate a disparate regulatory role for LGP2 in the triggering of innate immune signaling pathways following RNA virus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call