Abstract

The loss of coherency of interphase boundaries in two-phase titanium alloys during deformation was analyzed. The energy of the undeformed interphase boundary was first determined by means of the van der Merwe model for stepped interfaces. The subsequent loss of coherency was ascribed to the increase of interphase energy due to absorption of lattice dislocations and was quantified by a relation similar to the Read–Shockley equation for low-angle boundaries in single-phase alloys. It was found that interphase boundaries lose their coherency by a strain of approximately 0.5 at T = 800°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.