Abstract

Potential consequences of the binding of the anticancer drug cisplatin to various biomolecules in the cell have been investigated by using a combined density functional theory and continuum dielectric model approach. Since the amine ligands remain coordinated at the metal upon formation of the most frequent DNA adducts, whereas they were found to be displaced from the metal upon formation of drug metabolites, we have analyzed the factors governing amine loss from platinum(II) complexes as a possible pathway of cisplatin inactivation. The calculations systematically show the effect of 1) the trans ligand, 2) the charge of complex, 3) the nucleophile, and 4) the environment on the thermodynamic instability and kinetic lability of the platinum-amine bonds. After initial binding of cisplatin hydrolysis products to thioethers or thiols, loss of the amine trans to this sulfur ligand rather than replacement of the sulfur ligand itself by other nucleophiles like guanine-N7 is predicted to be the predominant reaction. The results of this study contribute to an understanding of the modes of cisplatin inactivation prior to DNA binding, for example, by elevated glutathione levels in cisplatin-resistant cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call