Abstract

Loss of cochlear hair cells results in a loss of ganglion cells and further neurodegenerative changes throughout the auditory pathway. Understanding more about the early stages of ganglion cell loss in vivo may lead to ways of ameliorating or preventing the loss of these neurons. To examine these stages, the effects of intracochlear perfusion with aminoglycoside antibiotics on the organ of Corti and spiral ganglion cells were evaluated in young adult guinea pigs at survival periods ranging from 1 hour to 12 weeks, using immunocytochemical and ultrastructural techniques. At 1 hour survival a base-to-apex gradient of damage was indicated in the cochlea by the appearance of severely damaged hair cells and injured ganglion cells in the basal coil while in the apical coil, hair cells were damaged but intact and ganglion cells appeared normal. By 4 hours the appearance of severely disrupted hair cells and damaged ganglion cells had extended throughout the cochlea. The ultrastructural appearance of many injured ganglion cells demonstrated features characteristic of cell death including condensed cytoplasm, non-marginal clumping of nuclear chromatin, and wrinkled nuclear membrane. Despite the loss of many ganglion cells, a population of these cells remained at 12 weeks survival. These contained large amounts of rough endoplasmic reticulum, were unmyelinated apart from the central process and were surrounded by satellite cells. These features are typical of ganglion cells during development, before the onset of hearing. Immunolabelling of cochlear whole mounts after hair cell destruction with protein gene product 9.5 (PGP 9.5) revealed the presence of neural elements in the organ of Corti at up to 12 weeks survival. These may be associated with the remaining ganglion cells. In these surviving ganglion cells, the intense labelling with PGP 9.5 together with the increase in rough endoplasmic reticulum, indicates the presence of active protein synthesis which may be connected with their survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.