Abstract

The influence of a Lorentz-violating fixed background on fermions is considered by means of a torsion-free non-minimal coupling. The non-relativistic regime is assessed and the Lorentz-violating Hamiltonian is determined. The effect of this Hamiltonian on the hydrogen spectrum is determined to first-order evaluation (in the absence of external magnetic field), revealing that there appear some energy shifts that modify the fine structure of the spectrum. In the case the non-minimal coupling is torsion-like, no first order correction shows up in the absence of an external field; in the presence of an external field, a secondary Zeeman effect is implied. Such effects are then used to set up stringent bounds on the parameters of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call