Abstract
The $D$-dimensional $(\beta, \beta')$-two-parameter deformed algebra introduced by Kempf is generalized to a Lorentz-covariant algebra describing a ($D+1$)-dimensional quantized space-time. In the D=3 and $\beta=0$ case, the latter reproduces Snyder algebra. The deformed Poincar\'e transformations leaving the algebra invariant are identified. It is shown that there exists a nonzero minimal uncertainty in position (minimal length). The Dirac oscillator in a 1+1-dimensional space-time described by such an algebra is studied in the case where $\beta'=0$. Extending supersymmetric quantum mechanical and shape-invariance methods to energy-dependent Hamiltonians provides exact bound-state energies and wavefunctions. Physically acceptable states exist for $\beta < 1/(m^2 c^2)$. A new interesting outcome is that, in contrast with the conventional Dirac oscillator, the energy spectrum is bounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.