Abstract

Slight postharvest bruises of loquats remarkably affect the quality and shelf life of the fruits, but they are difficult to identify using visual inspection. Sub-surface structural changes in cells caused by mechanical injury or impact can be detected using spectroscopy-based methods from different angles. Optical coherence tomography (OCT), a non-destructive technology, can acquire cross-sectional images to analyze sub-surface structures of loquats, thus offering the potential to identify fruit bruises. This study proposes an automated OCT image processing method for extracting large cells from loquat images, which involves a series of steps including image denoising, boundary detection, filtering, binarization, segmentation, and region selection. Parenchyma cells in loquat tissue were visualized and characterized, and the five-cell morphological parameters, including total cell surface area, average cell surface area, average cell Feret diameter, equivalent diameter, and cell amount were measured. The bruised and non-bruised loquat groups showed significant differences in the total cell surface area and cell amount, suggesting that these two parameters might be used as indictors for bruise identification. No significant differences in other parameters were observed between the two groups. The microcosm approach proposed in this study sheds some light on ways to improve fruit quality evaluation. Overall, combined with appropriate image processing, OCT is an efficient and non-destructive tool for loquat bruise detection. The proposed strategy might also be expanded to other agricultural applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call