Abstract

Large joint implants must have immediate fixation to be successful. Unfortunately, the magnitude and consistency of achieving this remains largely unknown. For cementless femoral components it is being increasingly appreciated that torsional loading as occurs during stair climbing or rising from a chair leads to loosening and thigh pain in some cases. A biomechanical test was developed to evaluate fixation in this position. Twelve pairs of human cadaveric femora were press-fit with an AML stem. Each femur was secured in a horizontal position, and the prosthetic head cyclically loaded in a vertically downward direction. The offset of the prosthetic head resulted in a combined torsional and compressive load being applied to the stem within the proximal femur. Loosening was found to consistently occur and rapidly accelerate when the head subsided more than 0.2 mm during 100 cycles. For the AML stem, loosening developed at loads from 62 to 171% of body weight and after as few as 800 cycles. This is within the physiologic range of normal daily activities as measured by others with instrumented prostheses. This poses a challenge to the ability of press-fit stems to tolerate torsional loads in vivo. Patients with a cementless prosthesis should be protected from torsional loading until porous ingrowth and/or bone remodelling have had time to occur. Testing the same stem in paired femora demonstrated no right vs left difference ( p > 0.6).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call