Abstract

The stimulator of interferon genes (STING) is an important therapeutic target for cancer diseases. The activated STING recruits downstream tank-binding kinase 1 (TBK1) to trigger several important immune responses. However, the molecular mechanism of how agonist molecules mediate the STING-TBK1 interactions remains elusive. Here, we performed molecular dynamics simulations to capture the conformational changes of STING and TBK1 upon agonist binding. Our simulations revealed that multiple helices (α5-α7) and especially three loops (loop 6, loop 8, and C-terminal tail) of STING participated in the allosteric mediation of the STING-TBK1 interactions. Consistent results were also observed in the simulations of the constitutive activating mutant of STING (R284S). We further identified α5 as a key region in this agonist-induced activation mechanism of STING. Free-energy perturbation calculations of multiple STING agonists demonstrated that an alkynyl group targeting α5 is a determinant for agonist activities. These results not only offer deeper insights into the agonist-induced allosteric mediation of STING-TKB1 interactions but also provide a guidance for future drug development of this important therapeutic target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call