Abstract
Inertial stick-slip driving is widely applied in precision positioning and needs a high stable power amplifier with fast step response to drive it. However, the inertial stick-slip driving is a capacitive load, which easily leads to the output voltage instability of power amplifier, and its ripple voltage also affects the positioning accuracy of inertial stick-slip driving. Therefore, this paper presents a loop compensation method to improve stability of power amplifier for inertial stick-slip driving. In this paper, a high dynamic amplification circuit is designed to realize fast step response, and the loop compensation method is proposed to eliminate self-excited oscillation and improve stability of the high dynamic amplification circuit. Then the experimental system is built to test the stability of the power amplifier through monitoring output voltage. Experimental results show that when the power amplifier drives inertial stick-slip platform of 0.5 μF, its phase margin is up to 80° and its static ripple to less than 3 mV. The results show that the method can improve stability by 400 times and the power amplifier can achieve high stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.