Abstract

Rationale: Reproducible direct measurement of neuronal electrical activity using MRI signal changes due to local magnetic field perturbations would represent a step change in neuroimaging methods. While some previous studies using experiments based on evoked and spontaneous activity provided encouraging results no clear demonstration of neuronal current-related MR changes in the human brain has emerged to date. The availability of simultaneously acquired EEG-fMRI in patients with frequent interictal epileptic discharges (IED), which have significantly greater amplitude than evoked potentials, offers the opportunity to further investigate the phenomenon.Methods: We re-analysed simultaneously acquired EEG-fMRI data in 6 epilepsy patients with very frequent focal IED and a well-localised generator. A model of MRI signal changes due to fast activity and BOLD signal changes was used to identify fast MR signal changes, potentially directly reflecting neuronal activity. Simultaneously-acquired EEG allowed the comparison of electrical source localisation (ESI), clinical epilepsy localisation and BOLD signal changes with the fast MR signal changes.Results: Clusters of IED-related fast MR signal change were observed in all cases. Spatial correspondence between the IED-related fast MR, BOLD, ESI clusters and irritative zone (IZ) was observed in one slice of a single dataset. The other IED-related fast MR clusters were remote from electro-clinically determined generators of interictal activity. The sign and magnitude of the fast MR signal changes varied across regions and subjects.Conclusion: The observed fast MR changes cannot be confidently attributed to the direct effect of neuronal currents due to lack of spatial concordance with generators of interictal activity, IED-related BOLD clusters and ESI estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.