Abstract

A multiple-cell approach is discussed as a possible alternative to the higher dimensional crystallography of icosahedral quasicrystals. It is based on the Socolar-Steinhardt tiling combined with the quasi-unit cell model. Quasi-unit cells fill the space without gaps and overlappings similar to those in periodic crystals. Similarly, the atoms can occupy general and special positions. The alloy stoichiometry and the packing density can be calculated through the relative tile frequencies, which in turn are determined as the components of the Perron-Frobenius eigenvector of the corresponding substitution matrix. The calculation of the diffraction pattern reduces to the Perron projection of a special matrix, the entries of which reflect the contribution of each type of quasi-unit cell to the coherent scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.