Abstract
Optical fiber communication system is one of the core supporting systems of the modern internet age, and studies on the ultrashort optical pulses are at the forefront of fiber optics, modern optics and optical engineering. Hereby, symbolic computation on the recently-proposed generalized higher-order variable-coefficient Hirota equation is performed, for certain ultrashort optical pulses propagating in a nonlinear inhomogeneous fiber. For the complex envelope function associated with the optical-pulse electric field in the fiber, an auto-Bäcklund transformation is worked out, along with a family of the analytic solutions. Both our Bäcklund transformation and analytic solutions depend on the optical-fiber variable coefficients which represent the effects of the first-order dispersion, second-order dispersion, third-order dispersion, Kerr nonlinearity, time delaying, phase modulation and gain/loss. Relevant constraints among those coefficients are also presented. We expect that the work could be of some use for the fiber-optics investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.