Abstract

We propose a lattice-matched Ge/GeSiSn quantum cascade detector (QCD) capable of operating in the longwave infrared. The optical absorption and carrier transport based on intersubband transitions all occur within the L-valley of the conduction band of the group-IV material system using N-doped quantum wells (QWs). The waveguided lattice matched structure can be deposited strain free on top of a Ge buffer grown on Si substrate, and is end-coupled to low-loss on-chip Ge waveguides. We optimized the QCD structure through the analysis of the photoresponsivity and detectivity D*. The QCD operates in photovoltaic mode with narrow spectral response that is peaked anywhere in the 9 to 16 µm range, tunable by design. This work aims to push the optical response of the photodetectors made from the SiGeSn material system to longer wavelengths. The study suggests the QCD response can indeed significantly extend the spectral range beyond that of the photodiodes and photoconductors made from the same group-IV system for a wide variety of applications in imaging, sensing, lidar, and space-and-fiber communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.