Abstract

Using sub-3-cycle pulses from mode-locked Cr:ZnS lasers at λ ≈ 2.4 µm as a driving source, we performed high-resolution dual-frequency-comb spectroscopy in the longwave infrared (LWIR) range. A duo of highly coherent broadband (6.6-11.4 µm) frequency combs were produced via intrapulse difference frequency generation in zinc germanium phosphide (ZGP) crystals. Fast (up to 0.1 s per spectrum) acquisition of 240,000 comb-mode-resolved data points, spaced by 80 MHz and referenced to a Rb clock, was demonstrated, resulting in metrology grade molecular spectra of N2O (nitrous oxide) and CH3OH (methane). The key to high-speed massive spectral data acquisition was low intensity and phase noise of the LWIR combs and high (7.5%) downconversion efficiency, resulting in a LWIR power of 300 mW for each comb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.