Abstract

Long-term studies of tree population dynamics play an important role in identifying the conservation needs of tropical forest ecosystems. We examined changes in tree population structure and composition over an 18-year period (1981–1999) in three plots located at the center of the Isecheno study site in the Kakamega Forest, Kenya, a forest with a history of logging and other anthropogenic disturbance. DBH size class distribution took the shape of an ‘inverse J’ curve in both 1981 and 1999 and did not differ significantly between the two study periods. Stem density increased significantly during the study with most of the increase occurring in the smallest stem size class (10–14 cm DBH). Nearly all of the most common species in 1981 remained among the most common in 1999, though the density of pioneer species decreased by 21% during the study. Our results suggest that forest in the study plots remained relatively undisturbed and in good condition over the study period. Forest in the plots also appeared still to be recovering from the selective logging of large trees that took place at Isecheno in the 1940s. In addition to our longitudinal study, we compared tree population parameters at three additional Isecheno sites spread over a distance of ∼1 km that have experienced different histories of disturbance: (i) a lightly human disturbed site (LHD), (ii) a heavily human disturbed site (HHD), and (iii) a cattle disturbed site (CD). While all three sites were selectively logged in the 1940s, the main signs of disturbance today are footpaths at the LHD site, tree stumps at the HHD site, and wide cattle paths at the CD site. Not surprisingly, of the disturbed sites, the LHD site was in the best condition. Trees at the HHD site exhibited extremely poor recruitment into the small size classes, a condition that can probably be attributed to human exploitation of small trees for poles. The CD site appeared to be at an earlier successional stage than the other disturbed sites with its low mean DBH, high overall stem density, and high pioneer species stem density. Browsing and trampling of vegetation by cattle may be the source of the light gaps that have led to the abundance of pioneer species at this site. We conclude that conservation measures applied to central Isecheno, including the establishment of a forest station nearby and ranger patrols, appear to have succeeded, but that the prognosis for the Kakamega Forest in general is bleak if protection efforts are not increased in other parts of the forest, where anthropogenic disturbance remains high. We also note the considerable variation in tree population structure and composition that can occur within a small area depending on the local history of disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.