Abstract

Sedimentological analyses of 289 years (AD 1718–2006) of varved sediment from Shadow Bay, southwest Alaska, were used to investigate hydroclimate variability during and prior to the instrumental period. Varve thicknesses relate most strongly to total annual discharge (r 2 = 0.75, n = 43, p < 0.0001). Maximum annual grain size depends most strongly on maximum spring daily discharge (r 2 = 0.63, n = 43, p < 0.0001) and maximum annual daily discharge (r 2 = 0.61, n = 43, p < 0.0001), while varve thickness is poorly correlated with maximum annual grain size (r 2 = 0.004, n = 287, p = 0.33). Relations between varve thickness and annual climate variables (temperature, precipitation, North Pacific (NP) and Pacific Decadal Oscillation (PDO) indices) are insignificant. On multidecadal timescales, however, regime shifts in varve thickness and total annual discharge coincide with shifts in NP and PDO indices. Periods with increased varve thickness and total annual discharge were associated with warm PDO phases and a strengthened Aleutian Low. The varve-inferred record of PDO suggests that any periodicity in the PDO varied over time, and that the early 19th century marked a transition to a more frequent or detectable shifts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call