Abstract

Crops’ water requirement is generally higher than the annual average precipitation in arid environments characterized by scarce freshwater resources. While using saline water for irrigation can help sustain agriculture in water-stressed regions, several challenges arises concerning productivity and soil salinization. However, adoption of efficient irrigation techniques such as drip irrigation, irrigation scheduling, and deficit irrigation can help optimize water productivity and mitigate salinity problems in irrigated agriculture. In southern Tunisia, potato is considered among the main cultivated horticultural crops due to its high economic value while it is considered as a crop sensitive to salinity. This crop (cv. Spunta) was the subject of long-term studies (2002–2020) conducted during the fall period in the arid region of Médenine. The crop response to full and deficit irrigation with saline water was assessed for several seasons under contrasting climatic conditions. Scheduling using the soil water balance (SWB) method consisted of the total and/or partial replacement of accumulated crop evapotranspiration (ETc), as derived from climatic data and crop coefficients. The impact of decreasing amounts of irrigation waters on crop yield and soil salinity with waters having a salinity ranging between 3 and 7 dS m−1 was evaluated. Results showed improvements in yield (30% to 37%) obtained with the SWB strategy under actual farming conditions, supporting the use of this strategy for irrigation. Appropriate scheduling also seems to be a key element in saving water (15%–22%) and in reducing risks of soil salinization. In the dry environment of southern Tunisia, optimum supply seems to correspond to a replacement of 100% to approximately 70%–80% of ETc. Applying such irrigation levels resulted in a lower salinity buildup in the root zone and higher crop water productivity. Natural salt leaching seems to be more effective under a more humid soil profile. Yield decreases and soil salinity increases almost linearly (r2 = 0.60) with decreasing irrigation water amounts. Future work should focus on the integration of management practices when using saline water. Investigating the relationship and interaction between irrigation amounts, cultivar, fertilizer supply, and salt leaching will help in resolving productivity and environmental issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.