Abstract

Permeable reactive barriers (PRBs) have shown great promise as an alternative to pump and treat for the remediation of groundwater containing a wide array of contaminants including organics, metals, and radionuclides. Analyses to date have focused on individual case studies, rather than considering broad performance issues. In response to this need, this study analyzed data from field installations of in situ zero-valent iron (ZVI) PRBs to determine what parameters contribute to PRB failure. Although emphasis has been placed on losses of reactivity and permeability, imperfect hydraulic characterization was the most common cause of the few PRB failures reported in the literature. Graphical and statistical analyses suggested that internal EH, influent pH, and influent concentrations of alkalinity, NO3 − and Cl− are likely to be the strongest predictors of PRBs that could be at risk for diminished performance. Parameters often cited in the literature such as saturation indices, dissolved oxygen, and total dissolved solids did not seem to have much predictive capability. Because of the relationship between the predictive parameters and corrosion inhibition, it appears that reactivity of the ZVI, rather than the reduction in permeability, is more likely the factor that limits PRB longevity in the field. Due to the sparseness of field monitoring of parameters such as EH, the data available for these analyses were limited. Consequently, these results need to be corroborated as additional measurements become available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call