Abstract

The long-term effects of copper nanoparticles (Cu NPs) on volatile fatty acids (VFAs) production during the waste activated sludge (WAS) fermentation, and the underlying mechanisms regarding copper species distribution and bacterial community evolution were explored. The yield of VFAs in the control was 1086 mg COD/L, whereas those were inhibited by 11.1%, 56.0% and 83.1%, with 25, 50, and 100 mg/g-TSS Cu NPs, respectively. Further investigation indicated that Cu NPs severely affected hydrolysis and acidification of WAS in a dose-dependent manner, while had little impact on solubilization. Besides, Cu NPs enriched the acid-consuming anaerobe while reducing the acid-forming bacteria. The metabolic pathways, microbial function, and enzymatic activities involved were inhibited at all tested dosages. Moreover, soluble and acid-extractable fractions dominated the copper speciation, which were also the main factors inhibiting the VFA production. This study provides a new perspective to interpret the long-term impacts of Cu NPs on WAS fermentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call