Abstract

The long-term durability of basalt fiber-reinforced geopolymer concrete (BFRGC) in marine environments is importance for the development of sustainable construction practices. This study examines the long-term durability of basalt fiber-reinforced geopolymer concrete exposed to dry-wet cycles and immersion treatment in marine conditions. A geopolymer concrete with 1% fiber content was prepared and subjected to dry-wet cycles and immersion treatments in a 5% sulfate solution (Tehmina et al., 2014; Nasir et al., 2016; John et al., 2016) [1-3]. Density measurements, ultrasonic pulse velocity tests, and uniaxial compression tests were conducted on the BFRGC after various treatment durations. The mechanical properties of BFRGC were compared with geopolymer concrete without fibers in marine environments. Additionally, the changes in compressive strength of geopolymer concrete with and without fibers in different immersion environments were further discussed. Using low-field nuclear magnetic resonance (LF-NMR) technology, the variations in pore structure were also analyzed. The results show that the mechanical property loss from dry-wet cycles was greater than from immersion treatment. In BFRGC, strength decreased by 10.1% after 192 days of dry-wet cycles, compared to a smaller decrease of 5.6% in immersion environments. The inclusion of basalt fibers effectively enhances stability. When in dry-wet cycle tests, BFRGC strength decreased from 49.6 MPa to 44.6 MPa, a reduction of 10.1%. Conversely, geopolymer concrete without fibers dropped from 49.7 MPa to 42.1 MPa, a reduction of 15.5%. LF-NMR test results show that the porosity of geopolymer concrete without fibers increased by 21.6% and 17.5% in dry-wet cycles and immersion environments, respectively. In contrast, the porosity of BFRGC increased by 16.1% and 12.7%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.