Abstract
We use a global climate model to investigate the impact of a wide range of radiative forcing and feedback mechanisms on the diurnal cycle of surface air temperature. This allows us not only to rule out many potential explanations for observed diurnal changes, but to infer fundamental information concerning the nature and location of the principal global climate forcings of this century. We conclude that the observed changes of the diurnal cycle result neither from natural climate variability nor a globally-distributed forcing, but rather they require the combination of a (negative) radiative forcing located primarily over continental regions together with the known globally-distributed forcing due to anthropogenic greenhouse gases. Tropospheric aerosols can account for part of the continentally-located forcing, but alone they do not damp the diurnal cycle as observed. Only an increase of continental cloud cover, possibly a consequence of anthropogenic aerosols, can damp the diurnal cycle by an amount comparable to observations. A corollary of these results is quantitative confirmation of the widely held suspicion that anthropogenic greenhouse gas warming has been substantially counterbalanced by a forced cooling. Under the assumption that the cloud change is sulfate driven, a further implication is that the net rate of global warming is likely to increase substantially in coming years. We note that, on the long run, the daily maximum temperature will increase by an amount not much less than the increase of the mean temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have