Abstract

Short-term electrical load forecasting is of great significance to the safe operation, efficient management, and reasonable scheduling of the power grid. However, the electrical load can be affected by different kinds of external disturbances, thus, there exist high levels of uncertainties in the electrical load time series data. As a result, it is a challenging task to obtain accurate forecasting of the short-term electrical load. In order to further improve the forecasting accuracy, this study combines the data-driven long-short-term memory network (LSTM) and extreme learning machine (ELM) to present a hybrid model-based forecasting method for the prediction of short-term electrical loads. In this hybrid model, the LSTM is adopted to extract the deep features of the electrical load while the ELM is used to model the shallow patterns. In order to generate the final forecasting result, the predicted results of the LSTM and ELM are ensembled by the linear regression method. Finally, the proposed method is applied to two real-world electrical load forecasting problems, and detailed experiments are conducted. In order to verify the superiority and advantages of the proposed hybrid model, it is compared with the LSTM model, the ELM model, and the support vector regression (SVR). Experimental and comparison results demonstrate that the proposed hybrid model can give satisfactory performance and can achieve much better performance than the comparative methods in this short-term electrical load forecasting application.

Highlights

  • With the rapid development of THE economy, the demand for electricity has increased greatly in recent years

  • From the point of view of these three indices, the performance of the proposed hybrid model can improve at least 5% compared to the long-short-term memory network (LSTM), 8% compared to extreme learning machine (ELM), and 15% compared to support vector regression (SVR)

  • 2018, 9, 165 8% compared to ELM, and 15% compared to SVR

Read more

Summary

Introduction

With the rapid development of THE economy, the demand for electricity has increased greatly in recent years. According to the statistics [1], the global power generation in 2007 was about 19,955.3 TWh, of which the power generation in China was 3281.6 TWh; and in 2015, the global power generation was about 24,097.7 TWh, while the power generation in China was 5810.6 TWh. In order to realize the sustainable development of our society, we need to adopt efficient strategies to effectively reduce the level of the electrical load. Electrical load forecasting plays an important role in the efficient management of the power grid, as it can improve the real-time dispatching and operation planning of the power systems, reduce the consumption of non-renewable energy, and increase the economic and social benefits of the power grids. In the past several decades, a great number of approaches have been proposed for electrical

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call