Abstract

Natural beaches tend to exhibit an equilibrium profile that is planar nearshore and nonplanar, concave-up offshore. The longshore current on this type of beach profile depends on the horizontal distance to the location of the intersection between the planar and nonplanar profiles. As the width of the planar beach face decreases, the location of the maximum longshore current moves closer to the shore. The dependency of the corresponding longshore sediment transport rate on the location of the intersection between the two profiles is demonstrated for two energetics-based sediment transport models. Again, a narrower beach face results in the maximum sediment transport being closer to the shore. Total sediment transport rates are also a function of the planar beach face width. This suggests that longshore transport rates are modulated by the tidal elevation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call