Abstract

To improve the lifetime of lithium-ion batteries, a detailed understanding of the degradation mechanisms is essential. Nuclear magnetic resonance (NMR) is able to unravel the reversible as well as irreversible transient changes of composition, shape and morphology in a battery cell. Using a newly developed cylindrical battery container free of metallic components in combination with a numerically optimized saddle coil, in operando NMR investigations of battery cells over hundreds of charge/discharge cycles are presented. Alternating with NMR data acquisition, electrochemical impedance spectra (EIS) can be recorded, which enables correlative analysis of the two techniques. Long-run in operando NMR measurements on a Li metal vs. graphite cell reveal the formation and evolution of mossy and dendritic Li microstructures over a period of 1000 h, which illustrates the capabilities of NMR to identify dendrite mitigation strategies in cells operated under realistic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call