Abstract

RV pressure monitoring can detect changes in RV systolic performance assess by RV Ees following the development of an acute RV ischemic model. Acute ischemic RV dysfunction was induced by progressive embolization of microsphere in the right coronary artery to mimic RV dysfunction clinically experienced during cardiopulmonary bypass separation caused by air microemboli. RV hemodynamic performance was assessed using RV pressure waveform-derived parameters and RV Ees obtained using a conductance catheter during inferior vena cava occlusions. Acute ischemia resulted in a significant reduction in RV Ees from 0.26 mm Hg/mL (interquartile range, 0.16-0.32 mm Hg/mL) to 0.14 mm Hg/mL (0.11-0.19 mm Hg/mL; p < 0.010), cardiac output from 6.3 L/min (5.7-7 L/min) to 4.5 (3.9-5.2 L/min; p = 0.007), mean systemic arterial pressure from 72 mm Hg (66-74 mm Hg) to 51 mm Hg (46-56 mm Hg; p < 0.001), and mixed venous oxygen saturation from 65% (57-72%) to 41% (35-45%; p < 0.001). Linear mixed-effect model analysis was used to assess the relationship between Ees and RV pressure-derived parameters. The reduction in RV Ees best correlated with a reduction in RV maximum first derivative of pressure during isovolumetric contraction (dP/dtmax) and single-beat RV Ees. Adjusting RV dP/dtmax for heart rate resulted in an improved surrogate of RV Ees. Stepwise decreases in RV Ees during acute ischemic RV dysfunction were accurately tracked by RV dP/dtmax derived from the RV pressure waveform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.