Abstract
Tissue mechanics is central to pregnancy, during which maternal anatomic structures undergo continuous remodeling to serve a dual function to first protect the fetus in utero while it develops and then facilitate its passage out. In this study of normal pregnancy using biomechanical solid modeling, we used standard clinical ultrasound images to obtain measurements of structural dimensions of the gravid uterus and cervix throughout gestation. 2-dimensional ultrasound images were acquired from the uterus and cervix in 30 pregnant subjects in supine and standing positions at four time points during pregnancy (8-14, 14-16, 22-24, and 32-34 weeks). Offline, three observers independently measured from the images of multiple anatomic regions. Statistical analysis was performed to evaluate inter-observer variance, as well as effect of gestational age, gravity, and parity on maternal geometry. A parametric solid model developed in the Solidworks computer aided design (CAD) software was used to convert ultrasonic measurements to a 3-dimensional solid computer model, from which estimates of uterine and cervical volumes were made. This parametric model was compared against previous 3-dimensional solid models derived from magnetic resonance frequency images in pregnancy. In brief, we found several anatomic measurements easily derived from standard clinical imaging are reproducible and reliable, and provide sufficient information to allow biomechanical solid modeling. This structural dataset is the first, to our knowledge, to provide key variables to enable future computational calculations of tissue stress and stretch in pregnancy, making it possible to characterize the biomechanical milieu of normal pregnancy. This vital dataset will be the foundation to understand how the uterus and cervix malfunction in pregnancy leading to adverse perinatal outcomes.
Highlights
To date, there has been a lack of clinical, translational, and basic science research in the field of reproductive biomechanics and bioengineering
Multiparous patients have a greater rate of lower uterine segment thinning, compared to nulliparous patients, and cervical lengths that remain constant with gestation
The parametric solid modeling method is able to automatically generate models based on patient-specific dimension measurements in 91% of cases
Summary
There has been a lack of clinical, translational, and basic science research in the field of reproductive biomechanics and bioengineering. Parturition (labor and delivery) is so common that every human has experienced it, there are currently no clinical tools to effectively predict when delivery will happen, how long pregnancy will last, and any complications which may arise. This lack of understanding of fundamental pregnancy biomechanics makes it extremely challenging to understand and address abnormal pregnancy conditions such as preterm birth (PTB, delivery before 37 weeks gestation), which affects 10% of deliveries worldwide and carries short- and long-term health consequences from death in the neonatal period to lifelong disability [1]. Failure and mistiming of these essentially mechanical events contribute to major obstetrical complications such as PTB [6, 7]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have