Abstract
Monitoring health care quality involves combining continuous and discrete outcomes measured on subjects across health care units over time. This article describes a Bayesian approach to jointly modeling multilevel multidimensional continuous and discrete outcomes with serial dependence. The overall goal is to characterize trajectories of traits of each unit. Underlying normal regression models for each outcome are used and dependence among different outcomes is induced through latent variables. Serial dependence is accommodated through modeling the pairwise correlations of the latent variables. Methods are illustrated to assess trends in quality of health care units using continuous and discrete outcomes from a sample of adult veterans discharged from 1 of 22 Veterans Integrated Service Networks with a psychiatric diagnosis between 1993 and 1998.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.