Abstract
Abstract We use the concept of a latent variable to derive the joint distribution of a continuous and a discrete outcome, and then extend the model to allow for clustered data. The model can be parameterized in a way that allows one to write the joint distribution as a product of a standard random effects model for the continuous variable and a correlated probit model for the discrete variable. This factorization suggests a convenient approach to parameter estimation using quasi-likelihood techniques. Our approach is motivated by the analysis of developmental toxicity experiments for which a number of discrete and continuous outcomes are measured on offspring clustered within litters. Fetal weight and malformation data illustrate the results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.