Abstract
We focus on the study of motion stability of vehicle nonlinear dynamics. The dynamic model combining with Burckhardt tire model is firstly derived. By phase portrait method, the vehicle stability differences of three cases, front wheels steering/four-wheel steering case, front/rear/four-wheel braking case, and high/low road friction case, are characterized. With the Jacobian matrix, the stable equilibrium point is found and stable areas are calculated out. Similarly, the stability boundaries corresponding to different working conditions are also captured. With vehicle braking or accelerating in the steering process, the relationship between front/rear wheel slippage and the stable area is examined. Comparing with current literatures, the research method and its results present the novelty and provide a guideline for new vehicle controller design.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have