Abstract

BackgroundAlthough no human illness to date is confirmed to be attributed to engineered nanoparticles, occupational epidemiological studies are needed to verify the health effects of nanoparticles. This study used a repeated measures design to explore the potential adverse health effects of workers handling nanomaterials.MethodsStudy population was 206 nanomaterial-handling workers and 108 unexposed controls, who were recruited from 14 nanotechnology plants. They were followed up no less than two times in four years. A questionnaire was used to collect potential confounders and detailed work conditions. Control banding was adopted to categorize risk level for each participant as a surrogate marker of exposure. Health hazard markers include cardiopulmonary dysfunction markers, inflammation and oxidative damage markers, antioxidant enzymes activity, and genotoxicity markers. The Generalized Estimating Equation model was applied to analyze repeated measurements.ResultsIn comparison to the controls, a significant dose-dependent increase on risk levels for the change of superoxide dismutase (p<0.01) and a significant increase of glutathione peroxidase change in risk level 1 was found for nanomaterial-handling workers. However, the change of cardiovascular dysfunction, lung damages, inflammation, oxidative damages, neurobehavioral and genotoxic markers were not found to be significantly associated with nanomaterials handling in this panel study.ConclusionsThis repeated measurement study suggests that there was no evidence of potential adverse health effects under the existing workplace exposure levels among nanomaterials handling workers, except for the increase of antioxidant enzymes.

Highlights

  • No human illness to date is confirmed to be attributed to engineered nanoparticles, occupational epidemiological studies are needed to verify the health effects of nanoparticles

  • Another study in the same research team shows that inhalable Carbon nanotubes and nanofibers structures were associated with matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum, and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2′-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood [11]

  • Health effect markers Based on the review of the inhalation studies in humans and animals [2, 4,5,6,7,8, 23,24,25,26,27,28], this study investigated six aspects of potential toxic endpoints, including lung inflammation, oxidative damage or lipid peroxidation and antioxidant enzyme activity, cardiovascular diseases markers, DNA damage and genotoxicity, pulmonary function, and neurobehavioral function

Read more

Summary

Introduction

No human illness to date is confirmed to be attributed to engineered nanoparticles, occupational epidemiological studies are needed to verify the health effects of nanoparticles. Another study in the same research team shows that inhalable Carbon nanotubes and nanofibers structures were associated with matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum, and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2′-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood [11]. It implies that the selection of health effect markers (acute or chronic) induced by engineered nanoparticles and using which specimens to test is important

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call